

INFLUENCE OF HIGH NITRATE SALTS CONCENTRATIONS ON DIMENSIONAL VARIATIONS OF MORTARS UNDER WET-CURING

P. Bénard, C. Cau-dit-Coumes, S. Garrault, A. Nonat

<u>Aim of the study :</u> investigate the dimensionnal variation under water of mortars prepared with nitrate rich solutions

Potential accidental scenario

Placed into measured cell filled with demineralised water

The length changes : displacement gauges consisting in linear variable differential transducers (LVDT)

- diffusion
- osmosis

- diffusion

- diffusion

Reducing the concentration gradients

- osmosis

$\Pi = 2 C_{alkalis} R.T$

with $C_{alkalis}$ = concentration of Na⁺ or K⁺ (mol/m³), R = gas constant (8.314 J.K⁻¹.mol⁻¹), T = temperature (K)

- osmosis

$\Pi = 2 C_{alkalis} R.T$

C_{alkalis} = determined by ICP.OES

- osmosis

n_{alkalis (pore)}

RESULTS

 $\Pi = 2 C_{alkalis} R.T$

$$\Pi = 2 C_{alkalis} R.T$$

RESULTS

 $\mathrm{G}.\boldsymbol{\gamma}=\boldsymbol{\Delta}\boldsymbol{\Pi}$

RESULTS

G.**γ** = $\Delta \Pi$

Mass increase at the end of experiment

RESULTS

Mass increase at the end of experiment

Mass increase at the end of experiment

-Not due to osmosis (effect should increase with ionic concentration of mixing solution)

Mass increase at the end of experiment

-Not due to osmosis (effect should increase with ionic concentration of mixing solution)

-Mass gain can result to two antagonist processes : water penetration / diffusion of salts

Weight loss

At the end of experiments

At the end of experiments

Mass increase at the end of experiment

-Not due to osmosis (effect should increase with ionic concentration of mixing solution)

-Mass gain can result to two antagonist processes : water penetration/diffusion of salts

-Difference in the degree of hydration

Nitrates retard cement hydration

Nitrates retard cement hydration

Mass gain can be due to water uptake due to capillary suction =compensation for water depletion by hydration

RESULTS

Mass gain can be due to water uptake due to capillary suction =compensation for water depletion by hydration

CONCLUSIONS

Mortars prepared with solutions of KNO₃ or NaNO₃ exhibited expansion

Expansion increases with the nitrate concentration in the mixing solution, whatever the associated cation.

Swelling was controlled by a concentration effect which involved diffusion and osmosis:

-diffusion of the ions of the pore solution into the less concentrated curing solution,

- water uptake by the material due to the osmotic pressure gradient between the pore and curing solutions.